Abstract

BackgroundParticular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1).ResultsThe genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting ~ 98% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the 2T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (α-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source.ConclusionsWe provide data that suggest that a recent hybridization between the genomes of related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain 2T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and “eco-enzymology” of lignocellulolytic Coniochaeta species.

Highlights

  • Species of the genus Coniochaeta have been isolated mainly from furfural-contaminated soil [1], decomposing wood in a mangrove area [2], decaying Acacia trees [3], Vitis vinifera plants [4], and soil-derived consortium cultivated on heat pretreated grass [5]

  • In liquid mineral medium supplemented with wheat straw, it grew in a yeast-like form (Fig. 1)

  • Regarding expression of carbohydrate-active enzymes (CAZymes), our result shows that families GH11, GH10, CE5, CE1, GH62, GH12, GH51, GH7, GH93, AA9, CE15, GH127, GH27, GH30, and GH74 were significantly and highly upregulated on raw wheat straw (WS) and dilute-acid-pretreated wheat straw (PTWS) compared with glucose (Glu) cultures

Read more

Summary

Introduction

Species of the genus Coniochaeta (phylum Ascomycota; subphylum Pezizomycotina; class Sordariomycetes) have been isolated mainly from furfural-contaminated soil [1], decomposing wood in a mangrove area [2], decaying Acacia trees [3], Vitis vinifera plants [4], and soil-derived consortium cultivated on heat pretreated grass [5]. This fungus can switch between a multicellular hyphal form and unicellular yeast growth, depending on environmental and/or nutritional conditions, similar to other reported dimorphic fungi [6]. We report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.