Abstract
BackgroundGenetic analysis of Escherichia coli O157:H7 strains has shown divergence into two distinct lineages, lineages I and II, that appear to have distinct ecological characteristics, with lineage I strains more commonly associated with human disease. In this study, microarray-based comparative genomic hybridization (CGH) was used to identify genomic differences among 31 E. coli O157:H7 strains that belong to various phage types (PTs) and different lineage-specific polymorphism assay (LSPA) types.ResultsA total of 4,084 out of 6,057 ORFs were detected in all E. coli O157:H7 strains and 1,751 were variably present or absent. Based on this data, E. coli O157:H7 strains were divided into three distinct clusters, which consisted of 15 lineage I (LSPA type 111111), four lineage I/II (designated in this study) (LSPA type 211111) and 12 lineage II strains (LSPA 222222, 222211, 222212, and 222221), respectively. Eleven different genomic regions that were dominant in lineage I strains (present in ≥80% of lineage I and absent from ≥ 92% of lineage II strains) spanned segments containing as few as two and up to 25 ORFs each. These regions were identified within E. coli Sakai S-loops # 14, 16, 69, 72, 78, 83, 85, 153 and 286, Sakai phage 10 (S-loops # 91, 92 and 93) and a genomic backbone region. All four lineage I/II strains were of PT 2 and possessed eight of these 11 lineage I-dominant loci. Several differences in virulence-associated loci were noted between lineage I and lineage II strains, including divergence within S-loop 69, which encodes Shiga toxin 2, and absence of the non-LEE encoded effector genes nleF and nleH1-2 and the perC homologue gene pchD in lineage II strains.ConclusionCGH data suggest the existence of two dominant lineages as well as LSPA type and PT-related subgroups within E. coli O157:H7. The genomic composition of these subgroups supports the phylogeny that has been inferred from other methods and further suggests that genomic divergence from an ancestral form and lateral gene transfer have contributed to their evolution. The genomic features identified in this study may contribute to apparent differences in the epidemiology and ecology of strains of different E. coli O157:H7 lineages.
Highlights
Genetic analysis of Escherichia coli O157:H7 strains has shown divergence into two distinct lineages, lineages I and II, that appear to have distinct ecological characteristics, with lineage I strains more commonly associated with human disease
Validation of microarray data by comparison with sequence data In the comparative genomic hybridization (CGH) experiments, 6,057 probes from the MWG E. coli O157:H7 array set hybridized with a mixture of labelled DNA from the three reference strains (K12, Sakai, and EDL933) yielded adequate signals and these probes were used for all subsequent analysis
A total of 4084 ORFs were detected in all of the strains, suggesting that they represent core genes conserved in all E. coli O157:H7 strains
Summary
Genetic analysis of Escherichia coli O157:H7 strains has shown divergence into two distinct lineages, lineages I and II, that appear to have distinct ecological characteristics, with lineage I strains more commonly associated with human disease. Genomic sequencing of two outbreak-related E. coli O157:H7 strains, Sakai and EDL 933, revealed that there are many phage-related sequences and genomic islands scattered throughout the chromosome of this organism and that many of these genetic elements encode potential virulence attributes [6,7,8,9]. These E. coli O157:H7-specific genomic segments are dispersed throughout 177 different regions of a common genomic backbone that is shared with the distantly related E. coli K-12. Known as S-loops and O-islands (OI) in Sakai and EDL933 strains, respectively, some of the regions must be responsible for the virulence characteristics that were acquired during evolution of E. coli O157:H7
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.