Abstract

CjCas9 is one of the smallest CRISPR-associated (Cas9) nucleases for mammalian genome editing. However, it requires a long N4RYAC (R= A or G; Y= C or T) protospacer-adjacent motif (PAM), limiting its DNA targeting scope. In this study, we investigated the PAMs of three CjCas9 orthologs, including Hsp1Cas9, Hsp2Cas9, and CcuCas9, by performing a GFP-activation assay. Interestingly, Hsp1Cas9 and CcuCas9 recognized unique N4RAA and N4CNA PAMs, respectively. We further generated an Hsp1Cas9-Hsp2Cas9 chimeric Cas9 (Hsp1-Hsp2Cas9), which recognized a simple N4CY PAM. Genome-wide off-target analysis revealed that Hsp1-Hsp2Cas9 has very few off-targets compared to SpCas9. By analyzing the crystal structure of CjCas9, we identified eight mutations that can improve the specificity and generate a high-fidelity Hsp1-Hsp2Cas9-Y. Hsp1-Hsp2Cas9-Y enables the knockout of B4GALNT2 and CMAH in porcine fetal fibroblasts (PFFs). Moreover, we developed a high-fidelity Hsp1-Hsp2Cas9-KY which displayed undetectable off-targets revealed by GUIDE-seq at four tested loci. These natural and engineered Cas9 nucleases enabled efficient genome editing in multiple mammalian cells, expanding the DNA targeting scope.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call