Abstract

Recent advances in genome editing technologies such as the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 have enabled the rapid and efficient modification of endogenous genomes in a variety of cell types, accelerating biomedical research. In particular, precise genome editing in somatic cells in vivo allows for the rapid generation of genetically modified cells in living animals and holds great promise for the possibility of directly correcting genetic defects associated with human diseases. However, because of the limited efficiency and suitability of these technologies in the brain, especially in postmitotic neurons, the practical application of genome editing technologies has been largely limited in the field of neuroscience. Recent technological advances overcome significant challenges facing genome editing in the brain and have enabled us to precisely edit the genome in both mitotic cells and mature postmitotic neurons in vitro and in vivo, providing powerful means for studying gene function and dysfunction in the brain. This review highlights the development of genome editing technologies for the brain and discusses their applications, limitations, and future challenges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call