Abstract

The recent advent of genome editing techniques and their rapid improvement paved the way in establishing innovative human neurological disease models and in developing new therapeutic opportunities. Human pluripotent (both induced or naive) stem cells and neural stem cells represent versatile tools to be applied to multiple research needs and, together with genomic snip and fix tools, have recently made possible the creation of unique platforms to directly investigate several human neural affections. In this chapter, we will discuss genome engineering tools, and their recent improvements, applied to the stem cell field, focusing on how these two technologies may be pivotal instruments to deeply unravel molecular mechanisms underlying development and function, as well as disorders, of the human brain. We will review how these frontier technologies may be exploited to investigate or treat severe neurodevelopmental disorders, such as microcephaly, autism spectrum disorder, schizophrenia, as well as neurodegenerative conditions, including Parkinson's disease, Huntington's disease, Alzheimer's disease, and spinal muscular atrophy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.