Abstract
Gene augmentation and genome editing are promising strategies for the treatment of monogenic inherited retinal diseases. Although gene augmentation treatments are commercially available for inherited retinal diseases, there are many shortcomings that need to be addressed, like progressive retinal degeneration and diminishing efficacy over time. Innovative CRISPR-Cas9-based genome editing technologies have broadened the proportion of treatable genetic disorders and can greatly improve or complement treatment outcomes from gene augmentation. Progress in this relatively new field involves the development of therapeutics including gene disruption, ablate-and-replace strategies, and precision gene correction techniques, such as base editing and prime editing. By making direct edits to endogenous DNA, genome editing theoretically guarantees permanent gene correction and long-lasting treatment effects. Improvements to delivery modalities aimed at limiting persistent gene editor activity have displayed an improved safety profile and minimal off-target editing. Continued progress to advance precise gene correction and associated delivery strategies will establish genome editing as the preferred treatment for genetic retinal disorders. This commentary describes the applications, strengths, and drawbacks of conventional gene augmentation approaches, recent advances in precise genome editing in the retina, and promising preclinical strategies to facilitate the use of robust genome editing therapies in human patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.