Abstract

All else being equal, polyploids are expected to have larger C-values (amount of DNA in the unreplicated gametic nucleus) than their diploid progenitors, increasing in direct proportion with ploidy. This expectation is observed in some polyploid series, especially those newly formed, but there are examples suggesting that C-values in particular polyploids are less than expected. The availability of the Angiosperm DNA C-values database (http://www.rbgkew.org.uk/cval/homepage.html) has allowed this question to be addressed across a broad range of angiosperms and has revealed striking results deviating from expectation: (i) mean 1C DNA amount did not increase in direct proportion with ploidy, and (ii) mean DNA amount per basic genome (calculated by dividing the 2C value by ploidy) tended to decrease with increasing ploidy. These results suggest that loss of DNA following polyploid formation, or genome downsizing, may be a widespread phenomenon of considerable biological significance. Recent advances in our understanding of the molecular events that take place following polyploid formation together with new data on how DNA amounts can both increase and decrease provide some insights into how genome downsizing may take place. The nature of the evolutionary forces that may be driving DNA loss are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.