Abstract

BackgroundMosquitoes in the Culex pipiens complex are among the most medically important vectors for human disease worldwide and include major vectors for lymphatic filariasis and West Nile virus transmission. However, detailed genetic studies in the complex are limited by the number of genetic markers available. Here, we describe methods for the rapid and efficient identification and development of single locus, highly polymorphic microsatellite markers for Cx. pipiens complex mosquitoes via in silico screening of the Cx. quinquefasciatus genome sequence.Methodology/Principal FindingsSix lab colonies representing four Cx. pipiens and two Cx. quinquefasciatus populations were utilized for preliminary assessment of 38 putative loci identified within 16 Cx. quinquefasciatus supercontig assemblies (CpipJ1) containing previously mapped genetic marker sequences. We identified and validated 12 new microsatellite markers distributed across all three linkage groups that amplify consistently among strains representing the complex. We also developed four groups of 3–5 microsatellite loci each for multiplex-ready PCR. Field collections from three cities in Indiana were used to assess the multiplex groups for their application to natural populations. All were highly polymorphic (Mean = 13.0 alleles) per locus and reflected high polymorphism information content (PIC) (Mean = 0.701). Pairwise FST indicated population structuring between Terre Haute and Fort Wayne and between Terre Haute and Indianapolis, but not between Fort Wayne and Indianapolis. In addition, we performed whole genome comparisons of microsatellite motifs and abundance between Cx. quinquefasciatus and the primary vectors for dengue virus and malaria parasites, Aedes aegypti and Anopheles gambiae, respectively.Conclusions/SignificanceWe demonstrate a systematic approach for isolation and validation of microsatellites for the Cx. pipiens complex by direct screen of the Cx. quinquefasciatus genome supercontig assemblies. The genome density of microsatellites is greater in Cx. quinquefasciatus (0.26%) than in Ae. aegypti (0.14%), but considerably lower than in An. gambiae (0.77%).

Highlights

  • Mosquitoes in the Culex pipiens complex are major vectors for a number of important human pathogens including West Nile virus, St

  • We identified 12 loci within eleven supercontigs that amplified consistently, were single copy and polymorphic when tested in individuals from six laboratory colonies representing both Cx. pipiens and Cx. quinquefasciatus populations derived from diverse sites worldwide (Table S3)

  • BLASTn analysis of microsatellites against Cx. quinquefasciatus transcripts (CpipJ1.2 Gene Build) indicated that C99TGT1 and C177GAA1 were within CPIJ005634 and CPIJ008257, respectfully, while no other microsatellites were within coding regions [24]

Read more

Summary

Introduction

Mosquitoes in the Culex pipiens complex are major vectors for a number of important human pathogens including West Nile virus, St. Louis encephalitis virus, and Wuchereria bancrofti, a causative agent of lymphatic filariasis [1,2,3]. Mosquitoes in the Culex pipiens complex are among the most medically important vectors for human disease worldwide and include major vectors for lymphatic filariasis and West Nile virus transmission. We describe methods for the rapid and efficient identification and development of single locus, highly polymorphic microsatellite markers for Cx. pipiens complex mosquitoes via in silico screening of the Cx. quinquefasciatus genome sequence

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.