Abstract

Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy characterized by the clonal proliferation of hematopoietic stem and progenitor cells (HSPCs) and blockade of differentiation and proliferation of immature myeloid cells that accumulate in bone marrow at the expense of normal hematopoiesis. AMLs originate from the expansion of HSPCs progressively acquiring somatic mutations. The development of high-throughput sequencing techniques has helped to discover the genetic heterogeneity and complexity of AMLs, revise diagnostic and prognostic criteria, and to identify new therapeutic targets. These studies have allowed the identification of several recurrent driver mutations and the definition of a rational molecular classification of these tumors. In parallel, the development of techniques for the determination of single-cell mutational profiling has considerably contributed to understanding the clonal heterogeneity and evolution of AMLs. The acquisition of these genetic data coupled with the identification of molecular therapeutic targets has determined a considerable expansion of the therapeutic armamentarium, with the development of several new drugs highly active against specific AML subtypes. These developments have increased the interest and the need for sensitive techniques for the identification of minimal residual disease, the population of leukemia cells that survives despite morphological remission and causes disease relapse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call