Abstract

The common pheasant (Phasianus colchicus) in the order Galliformes and the family Phasianidae, has 30 subspecies distributed across its native range in the Palearctic realm and has been introduced to Europe, North America, and Australia. It is an important game bird often subjected to wildlife management as well as a model species to study speciation, biogeography, and local adaptation. However, the genomic resources for the common pheasant are generally lacking. We sequenced a male individual of the subspecies torquatus of the common pheasant with the Illumina HiSeq platform. We obtained 94.88 Gb of usable sequences by filtering out low-quality reads of the raw data generated. This resulted in a 1.02 Gb final assembly, which equals the estimated genome size. BUSCO analysis using chicken as a model showed that 93.3% of genes were complete. The contig N50 and scaffold N50 sizes were 178 kb and 10.2 Mb, respectively. All these indicate that we obtained a high-quality genome assembly. We annotated 16,485 protein-coding genes and 123.3 Mb (12.05% of the genome) of repetitive sequences by ab initio and homology-based prediction. Furthermore, we applied a RAD-sequencing approach for another 45 individuals of seven representative subspecies in China and identified 4,376,351 novel single nucleotide polymorphism (SNPs) markers. Using this unprecedented data set, we uncovered the geographic population structure and genetic introgression among common pheasants in China. Our results provide the first high-quality reference genome for the common pheasant and a valuable genome-wide SNP database for studying population genomics and demographic history.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call