Abstract
Hibiscus sabdariffa L. is a widely cultivated herbaceous plant with diverse applications in food, tea, fiber, and medicine. In this study, we present a high-quality genome assembly of H. sabdariffa using more than 33 Gb of high-fidelity (HiFi) long-read sequencing data, corresponding to ∼20× depth of the genome. We obtained 3 genome assemblies of H. sabdariffa: 1 primary and 2 partially haplotype-resolved genome assemblies. These genome assemblies exhibit N50 contig lengths of 26.25, 11.96, and 14.50 Mb, with genome coverage of 141.3, 86.0, and 88.6%, respectively. We also utilized 26 Gb of total RNA sequencing data to predict 154k, 79k, and 87k genes in the respective assemblies. The completeness of the primary genome assembly and its predicted genes was confirmed by the benchmarking universal single-copy ortholog analysis with a completeness rate of 99.3%. Based on our high-quality genomic resources, we constructed genetic networks for phenylpropanoid and flavonoid metabolism and identified candidate biosynthetic genes, which are responsible for producing key intermediates of roselle-specific medicinal natural products. Our comprehensive genomic and functional analysis opens avenues for further exploration and application of valuable natural products in H. sabdariffa.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.