Abstract

BackgroundFinger millet (Eleusine coracana (L.) Gaertn.) is an important staple food crop widely grown in Africa and South Asia. Among the millets, finger millet has high amount of calcium, methionine, tryptophan, fiber, and sulphur containing amino acids. In addition, it has C4 photosynthetic carbon assimilation mechanism, which helps to utilize water and nitrogen efficiently under hot and arid conditions without severely affecting yield. Therefore, development and utilization of genomic resources for genetic improvement of this crop is immensely useful.ResultsExperimental results from whole genome sequencing and assembling process of ML-365 finger millet cultivar yielded 1196 Mb covering approximately 82% of total estimated genome size. Genome analysis showed the presence of 85,243 genes and one half of the genome is repetitive in nature. The finger millet genome was found to have higher colinearity with foxtail millet and rice as compared to other Poaceae species. Mining of simple sequence repeats (SSRs) yielded abundance of SSRs within the finger millet genome. Functional annotation and mining of transcription factors revealed finger millet genome harbors large number of drought tolerance related genes. Transcriptome analysis of low moisture stress and non-stress samples revealed the identification of several drought-induced candidate genes, which could be used in drought tolerance breeding.ConclusionsThis genome sequencing effort will strengthen plant breeders for allele discovery, genetic mapping, and identification of candidate genes for agronomically important traits. Availability of genomic resources of finger millet will enhance the novel breeding possibilities to address potential challenges of finger millet improvement.

Highlights

  • Finger millet (Eleusine coracana (L.) Gaertn.) is an important staple food crop widely grown in Africa and South Asia

  • The nuclear isolation buffer (NIB) composed of hypotonic Propidium Iodide (PI), 50 μg/ml in 3 g/L trisodium citrate dihydride containing 0.05% (v/v) of Nonidet P-40 containing 2 mg/mL RNaseA stored in a dark amber bottle in a refrigerator

  • The genome size of wild species ranged from 580 Mega bases (Mb) (E. jaegeri) to 1217 Mb (E. coracana subsp. africana)

Read more

Summary

Results

Experimental results from whole genome sequencing and assembling process of ML-365 finger millet cultivar yielded 1196 Mb covering approximately 82% of total estimated genome size. Genome analysis showed the presence of 85,243 genes and one half of the genome is repetitive in nature. The finger millet genome was found to have higher colinearity with foxtail millet and rice as compared to other Poaceae species. Mining of simple sequence repeats (SSRs) yielded abundance of SSRs within the finger millet genome. Functional annotation and mining of transcription factors revealed finger millet genome harbors large number of drought tolerance related genes. Transcriptome analysis of low moisture stress and non-stress samples revealed the identification of several drought-induced candidate genes, which could be used in drought tolerance breeding

Conclusions
Background
Methods
Results and Discussion
Unclassified
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call