Abstract

BackgroundPanax notoginseng (Burk.) F. H. Chen (P. notoginseng) is a medicinal plant. Cytochrome P450 (CYP450) monooxygenase superfamily is involved in the synthesis of a variety of plant hormones. Studies have shown that CYP450 is involved in the synthesis of saponins, which are the main medicinal component of P. notoginseng. To date, the P. notoginseng CYP450 family has not been systematically studied, and its gene functions remain unclear.ResultsIn this study, a total of 188 PnCYP genes were identified, these genes were divided into 41 subfamilies and clustered into 9 clans. Moreover, we identified 40 paralogous pairs, of which only two had Ka/Ks ratio greater than 1, demonstrating that most PnCYPs underwent purification selection during evolution. In chromosome mapping and gene replication analysis, 8 tandem duplication and 11 segmental duplication events demonstrated that PnCYP genes were continuously replicating during their evolution. Gene ontology (GO) analysis annotated the functions of 188 PnCYPs into 21 functional subclasses, suggesting the functional diversity of these gene families. Functional divergence analyzed the members of the three primitive branches of CYP51, CYP74 and CYP97 at the amino acid level, and found some critical amino acid sites. The expression pattern of PnCYP450 related to nitrogen treatment was studied using transcriptome sequencing data, 10 genes were significantly up-regulated and 37 genes were significantly down-regulated. Combined with transcriptome sequencing analysis, five potential functional genes were screened. Quantitative real-time PCR (qRT-PCR) indicated that these five genes were responded to methyl jasmonate (MEJA) and abscisic acid (ABA) treatment.ConclusionsThese results provide a valuable basis for comprehending the classification and biological functions of PnCYPs, and offer clues to study their biological functions in response to nitrogen treatment.

Highlights

  • Classification of identified PnCYP450s The 188 putative Cytochrome P450 (CYP450) genes were obtained from P. notoginseng

  • We identified 188 PnCYP genes, which were divided into 40 subfamilies and clustered into 9 clans

  • Gene structure, chromosome location, duplicated event, Gene ontology (GO) and KEGG annotation, and functional divergence analysis on this supergene family, which showed that PnCYP genes have undergone frequent evolution and functional diversity

Read more

Summary

Introduction

H. Chen (P. notoginseng) is a medicinal plant. Cytochrome P450 (CYP450) monooxygenase superfamily is involved in the synthesis of a variety of plant hormones. Studies have shown that CYP450 is involved in the synthesis of saponins, which are the main medicinal component of P. notoginseng. The P. notoginseng CYP450 family has not been systematically studied, and its gene functions remain unclear. H. Chen (P. notoginseng) belongs to the Araliaceae genus, and it is widely cultivated in Yunan province, China. P. notoginseng is a medicinal plant, and its medicinal records can be traced to 3000 years ago [1]. Previous researches have shown that P. notoginseng has numerous bioactive compounds, such as saponins, which are its the main medicinal ingredient [2]. A total of 56 dammarane-type saponins, such as

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call