Abstract

BackgroundThe asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced.Methodology/Principal FindingsGenome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’.Conclusions/SignificanceFoc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance us develop effective methods for managing the banana vascular wilt disease, including improvement of disease resistance in banana.

Highlights

  • The species Fusarium oxysporum (Fo) comprises a group of ubiquitous inhabitants of soils and plant pathogens causing vascular wilt and root diseases on a broad range of agricultural and ornamental plants worldwide [1]

  • The assembly sizes of both Foc isolates resemble that of Foc tropical race 4 strain II5 (46.55 Mb), which was released by Broad institute

  • None of hydrophobins in Fo have been characterized, we identified several class II hydrophobins in Foc (3 for Foc race 1 isolate (Foc1) and 4 for Foc race 4 isolate (Foc4)), one of which is evolutionary related to the hydrophobin MHP1 (PHI: 458) that is essential for fungal development and plant infection by M. grisea [47]

Read more

Summary

Introduction

The species Fusarium oxysporum (Fo) comprises a group of ubiquitous inhabitants of soils and plant pathogens causing vascular wilt and root diseases on a broad range of agricultural and ornamental plants worldwide [1]. Sp.) according to the pathogenicity to a set of host plants [2], and some formea speciales of Fo are further divided into several physiological races. Cubense (Foc) is the causal agent of fusarium wilt of banana (Musa spp.), which is one of the most important constraints on banana production and cause serious economic losses worldwide. It can be divided into four physiological races, race 1, 2, 3 and 4. To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call