Abstract

Muscular dystrophies are a group of heterogeneous genetic disorders characterized by progressive loss of skeletal muscle mass. Depending on the muscular dystrophy, the muscle weakness varies in degree of severity. The majority of myopathies are due to genetic events leading to a loss of function of key genes involved in muscle function. Although there is until now no curative treatment to stop the progression of most myopathies, a significant number of experimental gene- and cell-based strategies and approaches have been and are being tested in vitro and in animal models, aiming to restore gene function. Genome editing using programmable endonucleases is a powerful tool for modifying target genome sequences and has been extensively used over the last decade to correct in vitro genetic defects of many single-gene diseases. By inducing double-strand breaks (DSBs), the engineered endonucleases specifically target chosen sequences. These DSBs are spontaneously repaired either by homologous recombination in the presence of a sequence template, or by nonhomologous-end joining error prone repair. In this review, we highlight recent developments and challenges for genome-editing based strategies that hold great promise for muscular dystrophies and regenerative medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.