Abstract

The family Marseilleviridae consists of Acanthamoeba-infecting large DNA viruses with icosahedral particles ∼ 0.2 μm in diameter and genome sizes in the 346- to 380-kb range. Since the isolation of Marseillevirus from a cooling tower in Paris (France) in 2009, the family Marseilleviridae has expanded rapidly, with representatives from Europe and Africa. Five members have been fully sequenced that are distributed among 3 emerging Marseilleviridae lineages. One comprises Marseillevirus and Cannes 8 virus, another one includes Insectomime virus and Tunisvirus, and the third one corresponds to the more distant Lausannevirus. We now report the genomic characterization of Melbournevirus, the first representative of the Marseilleviridae isolated from a freshwater pond in Melbourne, Australia. Despite the large distance separating this sampling point from France, Melbournevirus is remarkably similar to Cannes 8 virus and Marseillevirus, with most orthologous genes exhibiting more than 98% identical nucleotide sequences. We took advantage of this optimal evolutionary distance to evaluate the selection pressure, expressed as the ratio of nonsynonymous to synonymous mutations for various categories of genes. This ratio was found to be less than 1 for all of them, including those shared solely by the closest Melbournevirus and Cannes 8 virus isolates and absent from Lausannevirus. This suggests that most of the 403 protein-coding genes composing the large Melbournevirus genome are under negative/purifying selection and must thus significantly contribute to virus fitness. This conclusion contrasts with the more common view that many of the genes of the usually more diverse large DNA viruses might be (almost) dispensable. A pervasive view is that viruses are fast-evolving parasites and carry the smallest possible amount of genomic information required to highjack the host cell machinery and perform their replication. This notion, probably inherited from the study of RNA viruses, is being gradually undermined by the discovery of DNA viruses with increasingly large gene content. These viruses also encode a variety of DNA repair functions, presumably slowing down their evolution by preserving their genomes from random alterations. On the other hand, these viruses also encode a majority of proteins without cellular homologs, including many shared only between the closest members of the same family. One may thus question the actual contribution of these anonymous and/or quasi-orphan genes to virus fitness. Genomic comparisons of Marseilleviridae, including a new Marseillevirus isolated in Australia, demonstrate that most of their genes, irrespective of their functions and conservation across families, are evolving under negative selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.