Abstract

We describe the results of a procedure for maximizing the number of sequences that can be reliably linked to a protein of known three-dimensional structure. Unlike other methods, which try to increase sensitivity through the use of fold recognition software, we only use conventional sequence alignment tools, but apply them in a manner that significantly increases the number of relationships detected. We analyzed 11 genomes and found that, depending on the genome, between 23 and 32% of the ORFs had significant matches to proteins of known structure. In all cases, the aligned region consisted of either >100 residues or >50% of the smaller sequence. Slightly higher percentages could be attained if smaller motifs were also included. This is significantly higher than most previously reported methods, even those that have a fold-recognition component. We survey the biochemical and structural characteristics of the most frequently occurring proteins, and discuss the extent to which alignment methods can realistically assign function to gene products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.