Abstract

We have determined the genome sequence of 8.7 Mb chromosome of Streptomyces peucetius ATCC 27952, which produces clinically important anthracycline chemotherapeutic agents of the polyketide class of antibiotics, daunorubicin and doxorubicin. The cytochrome P450 (CYP) superfamily is represented by 19 sequences in the S. peucetius. Among those, 15 code for functional genes, whereas the remaining four are pseudo genes. CYPs from S. peucetius are phylogenetically close to those of Streptomyces amermitilis. Four CYPs are associated with modular PKS of avermectin and two with doxorubicin biosynthetic gene cluster. CYP252A1 is the new family found in S. peucetius, which shares 38% identity to CYP51 from Streptomyces coelicolor A3 (2). Nine CYPs from S. peucetius are found in the cluster containing various regulatory genes including rar operon, conserved in S. coelicolor A3 (2) and Streptomyces griseus. Although two ferredoxins and four ferredoxin reductases have been identified so far, only one ferredoxin reductase was found in the cluster of CYP147F1 in S. peucetius. To date, 174 CYPs have been described from 45 Streptomyces species in all searchable databases. However, only 18 CYPs are clustered with ferredoxin. The comparative study of cytochrome P450s, ferredoxins, and ferredoxin reductases should be useful for the future development and manipulation of antibiotic biosynthetic pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call