Abstract

Sperm typing is an effective way to study recombination rate on a fine scale in regions of interest. There are two strategies for the amplification of single meiotic recombinants: repulsion-phase allele-specific PCR and whole genome amplification (WGA). The former can selectively amplify single recombinant molecules from a batch of sperm but is not scalable for high-throughput operation. Currently, primer extension pre-amplification is the only method used in WGA of single sperm, whereas it has limited capacity to produce high-coverage products enough for the analysis of local recombination rate in multiple large regions. Here, we applied for the first time a recently developed WGA method, multiple displacement amplification (MDA), to amplify single sperm DNA, and demonstrated its great potential for producing high-yield and high-coverage products. In a 50 μl reaction, 76 or 93% of loci can be amplified at least 2500- or 250-fold, respectively, from single sperm DNA, and second-round MDA can further offer >200-fold amplification. The MDA products are usable for a variety of genetic applications, including sequencing and microsatellite marker and single nucleotide polymorphism (SNP) analysis. The use of MDA in single sperm amplification may open a new era for studies on local recombination rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.