Abstract
Abstract In this work, we propose a new operational method based on a Genocchi wavelet-like basis to obtain the numerical solutions of non-linear fractional order differential equations (NFDEs). To the best of our knowledge this is the first time a Genocchi wavelet-like basis is presented. The Genocchi wavelet-like operational matrix of a fractional derivative is derived through waveletpolynomial transformation. These operational matrices are used together with the collocation method to turn the NFDEs into a system of non-linear algebraic equations. Error estimates are shown and some illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.