Abstract

Context: Genistein reduces high-calorie diet-induced insulin resistance and fat accumulation in animals, but the mechanism is unresolved.Objective: This study explores whether action of genistein is associated with p70 ribosomal S6 kinase-1 (S6K1) inhibition.Materials and methods: Adult male mice were fed either normal diet or high-fat–high-fructose diet (HFFD) for 15 days, after which animals in each dietary group were divided into two groups and administered either genistein (1 mg kg−1 day−1, p.o.) in 0.5 ml of 30% dimethylsulfoxide (DMSO) or 30% DMSO (0.5 ml) for the next 45 days. At the end of the study, their liver was analyzed for lipid content. Semi-quantitative RT-PCR and western blotting methods were used to analyze lipid regulatory genes and insulin signaling proteins, respectively.Results: Genistein significantly (p < 0.05) lowered HFFD-induced body and liver weight gain and plasma and hepatic lipid levels. Histology showed a 2.5-fold increase of lipid in HFFD compared to control. Genistein treatment to HFFD-fed animals significantly decreased lipid accumulation (by 40%) compared to HFFD. Insulin-stimulated tyrosine phosphorylation of insulin receptor-β and insulin receptor substrates-1 (IRS-1), IRS-1 associated phospatidylinositol-3kinase (PI3K) and Akt Ser473 phosphorylation were improved while IRS-1 serine phosphorylation was significantly (p < 0.05) decreased by genistein in HFFD. Significant (p < 0.05) increase in adenosine monophosphate-activated protein kinase (AMPK) Thr172 phosphorylation and decrease in S6K1 Thr389 phosphorylation were observed in HFFD-plus genistein compared to HFFD. Genistein downregulated lipogenic genes and upregulated fatty acid oxidative genes in HFFD-fed mice.Conclusion: Genistein improves insulin signaling and attenuates fat accumulation in liver through S6K1 inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.