Abstract

Mucopolysaccharidoses (MPS) are lysosomal storage disorders resulting from a deficit of specific lysosomal enzymes catalysing glycosaminoglycan (GAG) degradation. The typical pathology involves most of the organ systems, including the brain, in its severe forms. The soy isoflavone genistein has recently attracted considerable attention as it can reduce GAG synthesis in vitro. Furthermore, genistein is able to cross the blood-brain barrier in the rat. The present study was undertaken to assess the ability of genistein to reduce urinary and tissue GAG levels in vivo. We used mice with genetic deletion of iduronate-2-sulphatase (one of the GAG catabolizing enzymes) which provide a model of MPS type II. Two doses of genistein, 5 or 25 mg.kg(-1).day(-1), were given, in the diet for 10 or 20 weeks. Urinary and tissue GAG content was evaluated by biochemical and histochemical procedures. Urinary GAG levels were reduced after 10 weeks' treatment with genistein at either 5 or 25 mg.kg(-1).day(-1). In tissue samples from liver, spleen, kidney and heart, a reduction in GAG content was observed with both dosages, after 10 weeks' treatment. Decreased GAG deposits in brain were observed after genistein treatment in some animals. There was decreased GAG storage in the MPSII mouse model following genistein administration. Our results would support the use of this plant-derived isoflavone in a combined therapeutic protocol for treatment of MPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.