Abstract

Protein tyrosine kinase (PTK) inhibitors have been proposed to reduce lung injury and lethal toxicity. The mechanisms responsible for the effects of PTK inhibitors remain obscure. The purpose of the present study was to examine whether genistein, a specific inhibitor of PTK, inhibits nuclear factor-kappa B (NF-kappaB) activation during acute lung injury induced by lipopolysaccharide (LPS) and, if so, to enumerate the effects of inhibition of NF-kappaB activation on LPS-induced proinflammatory gene products, such as cytokine-inducible neutrophil chemoattractant (CINC) and matrix metalloproteinase-9 (MMP-9), as well as neutrophil influx into the lungs. Intratracheal treatment of rats with LPS (6 mg/kg) resulted in increases in total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid and activated DNA-binding activity of NF-kappaB in alveolar macrophages and lung tissue. A 2-h pretreatment with genistein (50 mg/kg, intraperitoneally) inhibited the LPS-induced changes in lung injury parameters and the induction of NF-kappaB activation. Furthermore, these inhibitory effects of genistein correlated with a depression of LPS-induced protein tyrosine phosphorylation (approximately molecular masses of 46, 48, and 54 kD) and phosphorylation of Jun N-terminal kinase (JNK) in lung tissue. Genistein also substantially reduced the LPS-induced CINC production and MMP-9 activity and suppressed neutrophil recruitment. These results suggest that genistein attenuates LPS-induced acute lung responses through inhibition of NF-kappaB activation. In addition, NF-kappaB activation appears to be an important mechanism mediating LPS-induced CINC production and MMP-9 activity and resulting neutrophil recruitment associated with acute lung inflammation and injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.