Abstract

To create genistein particles, a brand-new antisolvent recrystallization technique was employed. The response surface approach was utilized to optimize the single factor test findings, which were acquired via the preliminary tests. The ideal liquid-to-liquid ratio was 9, the solution concentration was 21 mg/mL, the nozzle diameter was 700 μm, the feed rate was 39.65 mL/min, and the homogenization rate was 1500 rpm. The smallest mean particle size measured was 202.782 nm. SEM was used to study the powder's morphology, while thermal analysis and infrared imaging were used to evaluate its characteristics. The homogeneous antisolvent recrystallization method-prepared GMP has a better dissolving rate and stronger antioxidant activity when compared to genistein powder. The antisolvent recrystallization approach used in this study, which uses low-speed homogenizing instead of conventional grinding and homogenizing, can successfully reduce particle size, improve bioavailability, and use less energy. This topic may thus be made popular because it has real-world applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.