Abstract

Genistein, a flavonoid in legumes and some herbal medicines, has various biological actions. However, studies on whether genistein has an effect on pancreatic beta-cell function are very limited. In the present study, we investigated the effect of genistein on beta-cell proliferation and cellular signaling related to this effect and further determined its antidiabetic potential in insulin-deficient diabetic mice. Genistein induced both INS1 and human islet beta-cell proliferation after 24 h of incubation, with 5 mum genistein inducing a maximal 27% increase. The effect of genistein on beta-cell proliferation was neither dependent on estrogen receptors nor shared by 17beta-estradiol or a host of structurally related flavonoid compounds. Pharmacological or molecular intervention of protein kinase A (PKA) or ERK1/2 completely abolished genistein-stimulated beta-cell proliferation, suggesting that both molecules are essential for genistein action. Consistent with its effect on cell proliferation, genistein induced cAMP/PKA signaling and subsequent phosphorylation of ERK1/2 in both INS1 cells and human islets. Furthermore, genistein induced protein expression of cyclin D1, a major cell-cycle regulator essential for beta-cell growth. Dietary intake of genistein significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in streptozotocin-induced diabetic mice, concomitant with improved islet beta-cell proliferation, survival, and mass. These results demonstrate that genistein may be a natural antidiabetic agent by directly modulating pancreatic beta-cell function via activation of the cAMP/PKA-dependent ERK1/2 signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.