Abstract

Hepatic encephalopathy (HE) is a neuropsychiatric syndrome resulting from acute liver failure. Previously, we demonstrated hepatoprotective effects of genistein in D-galactosamine (D-GalN)-induced fulminant hepatic failure (FHF). In this study, we evaluated behavioural and neuroprotective effects of genistein in rat model of HE. HE was induced by intraperitonial administration of D-GalN (250mg/kg BW) twice a week for 30days Genistein was given as co-treatment through oral gavage daily at dose of 5mg/kg BW. D-GalN administration significantly resulted in acute liver failure which was further associated with hyperammonemia, neurological dysfunction, as evident from behavioural and functional impairment and reduced learning ability in Morris water maze. Genistein significantly alleviated behavioural and functional impairment and restored learning ability in Morris water maze. Considerable histopathological changes, including portal inflammation, sinusoidal dilation, necrotic lesions and swelled astrocytes with pale nuclei, were seen in the liver and brain sections of D-GalN-challenged rats while genistein co-treated rats revealed normal cellular and morphological architecture as no pathological features were seen. Furthermore, pro-inflammatory markers (interleukin (IL)-10, IL-4, IL-1β and TNF-α) and membrane expression of subunits α1 of GABAA receptor and GluR2 of AMPA marked significant increase, while subunits GluR1 of AMPA receptors showed reduced expression in D-GalN-challenged rats leading to neuroinflammation and dysregulated neurotransmission. Genistein significantly normalized altered expression of pro-inflammatory cytokines and membrane receptor of GABA and GluR. Our study suggests strong therapeutic potential of genistein in animal model of HE. Genistein can be used a strong anti-oxidant to attenuate neurotoxic effects of xenobiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.