Abstract
The blood-brain barrier (BBB) is involved in the pathogeneses of ischemic stroke (IS). Geniposide (GEN), an iridoid glycoside isolated from Gardenia jasminoides Ellis, has been used for the treatment of IS. However, the effects of GEN on the BBB are poorly understood. In vitro disease models of the BBB could be very helpful for the elucidation of underlying mechanisms and the development of novel therapeutic strategies. Therefore, we established an in vitro BBB model composed of primary cultures of brain microvascular endothelial cells and astrocytes. We then used this in vitro model to investigate the effect of GEN on the function of the BBB. Oxygen glucose deprivation and reoxygenation (OGD/R) significantly increased permeability and cell apoptosis in this in vitro BBB model. Notably, GEN pretreatment effectively improved the BBB function by decreasing the permeability of the BBB, promoting expression of tight junction proteins (zonula occludens-1, claudin-5, and occludin) and gamma-glutamyl transpeptidase, increasing transendothelial electrical resistance, mitigating oxidative stress damage and the release of inflammatory cytokines, downregulating the expression levels of matrix metallopeptidases-9 (MMP-9) and MMP-2, and increasing the release of brain derived neurotrophic factor and glial cell derived neurotrophic factor. Therefore, GEN can ameliorate the BBB dysfunction induced by OGD/R conditions through multiple protective mechanisms. The findings suggest that GEN may be an appropriate drug for restoring the barrier function of the BBB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.