Abstract

The genipin cross-linked alginate-chitosan (GCAC) microcapsule, composed of an alginate core and a genipin cross-linked chitosan membrane, was recently proposed for live cell encapsulation and other delivery applications. This article for the first time describes the details of the microcapsule membrane characterization using a noninvasive and in situ method without any physical or chemical modifications on the samples. Results showed that the cross-linking reaction generated the fluorescent chitosan-genipin conjugates. The cross-linked chitosan membrane was clearly visualized by confocal laser scanning microscopy (CLSM). A straightforward assessment on the membrane thickness and relative intensity was successfully achieved. CLSM studies showed that the shell-like cross-linked chitosan membranes of approximately 37 microm in thickness were formed surrounding the microcapsule. The reaction variables, including cross-linking temperature and time significantly affected the fluorescence intensity of the membranes. Elevating the cross-linking temperature from 4 to 37 degrees C drastically intensified the membrane fluorescence, suggesting the attainment of a high degree of cross-linking on the chitosan membrane. Extended cross-linking time altered the cross-linked membranes in modulation. Although genipin concentration and cross-linking time had little effects on the membrane thickness, cross-linking at higher temperatures tended to form relatively thinner membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call