Abstract

The present investigation was carried out aiming to use the bioinformatics tools in order to identify and characterize, simple sequence repeats within the third Version of the date palm genome and develop a new SSR primers database. In addition single nucleotide polymorphisms (SNPs) that are located within the SSR flanking regions were recognized. Moreover, the pathways for the sequences assigned by SSR primers, the biological functions and gene interaction were determined. A total of 172,075 SSR motifs was identified on date palm genome sequence with a frequency of 450.97 SSRs per Mb. Out of these, 130,014 SSRs (75.6%) were located within the intergenic regions with a frequency of 499 SSRs per Mb. While, only 42,061 SSRs (24.4%) were located within the genic regions with a frequency of 347.5 SSRs per Mb. A total of 111,403 of SSR primer pairs were designed, that represents 291.9 SSR primers per Mb. Out of the 111,403, only 31,380 SSR primers were in the genic regions, while 80,023 primers were in the intergenic regions. A number of 250,507 SNPs were recognized in 84,172 SSR flanking regions, which represents 75.55% of the total SSR flanking regions. Out of 12,274 genes only 463 genes comprising 896 SSR primers were mapped onto 111 pathways using KEGG data base. The most abundant enzymes were identified in the pathway related to the biosynthesis of antibiotics. We tested 1031 SSR primers using both publicly available date palm genome sequences as templates in the in silico PCR reactions. Concerning in vitro validation, 31 SSR primers among those used in the in silico PCR were synthesized and tested for their ability to detect polymorphism among six Egyptian date palm cultivars. All tested primers have successfully amplified products, but only 18 primers detected polymorphic amplicons among the studied date palm cultivars.

Highlights

  • Date palm (Phoenix dactylifera L., 2n = 36) [1] is one of the most economic important fruit trees in the Middle East and North Africa

  • The present investigation was carried out aiming to: 1) identify and characterize, simple sequence repeats within the third Version (VS 3.0) of the date palm genome; 2) comparatively analyze genic and intergenic SSR motifs and develop a new SSR primers database; 3) recognize all single nucleotide polymorphisms (SNPs) that are located within the SSR flanking regions and 4) annotate the pathways for the sequences assigned by SSR primers and determine the biological functions and gene interaction

  • This could be due to the different criteria and the use of the full genome sequence adopted in our investigation

Read more

Summary

Introduction

Date palm (Phoenix dactylifera L., 2n = 36) [1] is one of the most economic important fruit trees in the Middle East and North Africa. It is a dioecious, cross pollinated, perennial monocotyledon and belongs of the order Arecaceae [2]. There are over 2000 varieties that vary in shape, color, size, and weight [4] Despite such a large number of varieties, for many years the detection of genetic variation in date palm was relying on the morphological variation between cultivars [5]. Compared with other types of molecular markers, SSRs have many advantages, such as simplicity, effectiveness, abundance, hyper variability, reproducibility, co-dominant inheritance and extensive genomic coverage [9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call