Abstract

Motivated by the deployment of wide-area high-speed networks, we propose GENEVA, the streaming control algorithm using generalized multiplicative-increase/additive-decrease (GMIAD). Because current typical con- gestion controllers such as a TCP-friendly rate control prevent occurrences of network congestion reacting susceptibly to packet loss, it causes a significant degradation of streaming quality due to low-achieving throughput (i.e., lower throughput than the maximum throughput that a streaming flow requires in maximum audio/video quality) and data packet losses. GENEVA avoids this problem by allowing a streaming flow to maintain moderate network congestion while trying to recover lost data packets that other competing flows cause during the process of probing for available bandwidth. Using the GMIAD mechanism, the FEC window size (the degree of FEC redundancy per unit time) is adjusted to suppress occurrences of bursty packet loss, while trying to effectively utilize network resources that other competing flows cannot consume due to reductions in the transmission rate in response to packet loss. We describe the GENEVA algorithm and evaluate its effectiveness using an NS-2 simulator. The results show that GENEVA enables high-performance streaming flows to retain higher streaming quality under stable conditions while minimizing the adverse impact on competing TCP performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.