Abstract

Alternating patches of black and yellow pigment are a ubiquitous feature of mammalian color variation that contributes to camouflage, species recognition, and morphologic diversity. X-linked determinants of this pattern--recognized by variegation in females but not in males--have been described in the domestic cat as Orange, and in the Syrian hamster as Sex-linked yellow (Sly), but are curiously absent from other vertebrate species. Using a comparative genomic approach, we develop molecular markers and a linkage map for the euchromatic region of the Syrian hamster X chromosome that places Sly in a region homologous to the centromere-proximal region of human Xp. Comparison to analogous work carried out for Orange in domestic cats indicates, surprisingly, that the cat and hamster mutations lie in nonhomologous regions of the X chromosome. We also identify the molecular cause of recessively inherited black coat color in hamsters (historically referred to as nonagouti) as a Cys115Tyr mutation in the Agouti gene. Animals doubly mutant for Sly and nonagouti exhibit a Sly phenotype. Our results indicate that Sly represents a melanocortin pathway component that acts similarly to, but is genetically distinct from, Mc1r and that has implications for understanding both the evolutionary history and the mutational mechanisms of pigment-type switching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.