Abstract

BackgroundSeveral attempts to decipher the genetics of hypertension of unknown causes have been made including large-scale genome-wide association analysis (GWA), but only a few genes have been identified. Unsolved heterogeneity of the regulation of blood pressure and the shortcomings of the prevailing monogenic approach to capture genetic effects in a polygenic condition are the main reasons for the modest results. The level of the blood pressure is the consequence of the genotypic state of the presumably vast network of genes involved in regulating the vascular tonus and hence the blood pressure. Recently it has been suggested that components of the sphingolipid metabolism pathways may be of importance in vascular physiology. The basic metabolic network of sphingolipids has been established, but the influence of genetic variations on the blood pressure is not known. In the approach presented here the impact of genetic variations in the sphingolipid metabolism is elucidated by a two-step procedure. First, the physiological heterogeneity of the blood pressure is resolved by a latent class/structural equation modelling to obtain homogenous subpopulations. Second, the genetic effects of the sphingolipid metabolism with focus on de novo synthesis of ceramide are analysed. The model does not assume a particular genetic model, but assumes that genes operate in networks.ResultsThe stratification of the study population revealed that (at least) 14 distinct subpopulations are present with different propensity to develop hypertension. Main effects of genes in the de novo synthesis of ceramides were rare (0.14% of all possible). However, epistasis was highly significant and prevalent amounting to approximately 70% of all possible two-gene interactions. The phenotypic variance explained by the ceramide synthesis network were substantial in 4 of the subpopulations amounting to more than 50% in the subpopulation in which all subjects were hypertensive. Construction of the network using the epistatic values revealed that only 17% of the interactions detected were in the direct metabolic pathway, the remaining jumping one or more intermediates.ConclusionsThis study established the components of the ceramide/sphingosine-1-phosphate rheostat as central to blood pressure regulation. The results in addition confirm that epistasis is of paramount importance and is most conspicuous in the regulation of the rheostat network. Finally, it is shown that applying a simple case-control approach with single gene association analysis is bound to fail, short of identifying a few potential genes with small effects.

Highlights

  • Several attempts to decipher the genetics of hypertension of unknown causes have been made including large-scale genome-wide association analysis (GWA), but only a few genes have been identified

  • VLDL was included in all models and is interesting as it and other lipoproteins are composite particle harbouring ceramides and sphingosine-1-phosphate [41,42]

  • A detailed interpretation of these differences is very complex, but generally the analysis showed that different single nucleotide polymorphisms (SNPs), genes or subnetworks are of importance in discerning hypertensive from non-hypertensive, between different hypertensive subpopulations, and between diastolic and systolic blood pressures

Read more

Summary

Introduction

Several attempts to decipher the genetics of hypertension of unknown causes have been made including large-scale genome-wide association analysis (GWA), but only a few genes have been identified. In particular the large GWA studies have regrettably falling short of explaining the full genetic picture associated with hypertension [12,13,14,15,16] The reasons for this are numerous, one of the most important being that most studies do not includes gene-gene interactions in the analysis (power issues being the main cause), despite the fact that essential hypertension is a polygenic trait influenced by an unknown number genes probably running in the hundreds. As in all other biological processes the regulation of the blood pressure is defined in networks of interacting genes, in which the activity and impact on the blood pressure depends on the genetic variety in various parts of the networks This genetic variety is expressed as phenotypic heterogeneity and essential hypertension is merely a clinical end-point term for the diverse states of the genetic pathways of blood pressure regulation

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.