Abstract

The Synechocystis sp. PCC6803 can move on a solid surface in response to light, a phenomenon called phototaxis. Although many of the photoreceptors involved in phototaxis have been identified, the mechanisms that regulate directional motility of Synechocystis are not well understood. Previous studies showed that a mutant lacking the blue light-using flavin (BLUF) photoreceptor PixD exhibits negative phototaxis under conditions where the wild type responds positively. PixD interacts with the pseudo-response regulator-like protein PixE in a light-dependent manner, suggesting that this intermolecular interaction is important for phototaxis regulation, although genetic evidence has been lacking. To gain further insight into phototaxis regulation by PixD-PixE signaling, we constructed the deletion mutants ΔPixE and ΔPixD-ΔPixE, and characterized their phenotypes, which matched those of the wild type (positive phototaxis). Because ΔPixD exhibited negative phototaxis, PixE must function downstream of PixD. Under intense blue light (>100 μmol m-2 s-1; 470 nm) the wild type exhibited negative phototaxis, but ΔPixD-PixE exhibited positive phototaxis toward low-intensity blue light (∼0.8 μmol m-2 s-1; 470 nm). These results suggest that an unknown light-sensing system(s), that is necessary for directional cell movement, can be activated by low-intensity blue light; on the other hand, PixD needs high-intensity blue light to be activated. We also isolated spontaneous mutants that compensated for the pixE deletion. Genome-wide sequencing of the mutants revealed that the uncharacterized gene sll2003 regulates positive and negative phototaxis in response to light intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call