Abstract
Human salivary PRPs are determined by six closely linked genes on chromosome 12p13.2. The many PRPs show complex electrophoretic patterns that differ between individuals and reflect numerous genetic polymorphisms. Frequent length and null polymorphisms are common among PRPs. Common themes emerge as a background for these PRP polymorphisms. First, posttranslational proteolysis occurs with double-banded patterns among acidic PRPs and the generation of numerous basic PRPs derived from precursor proteins. Specific mutations may interfere with proteolysis, preventing generation of double-banded acidic PRPs (as with the Pa protein) or of small basic PRPs from precursor proteins (as with Pm proteins). Second, single cysteine substitutions in PRPs (Pa from PRH1 and G1 8 from PRB3) may lead to disulfide bonded homodimers as well as heterodimers with salivary peroxidase. Third, frequent homologous and unequal crossing-over within the PRP gene cluster leads to frequent protein size-variants (intragenic events as with the G1 protein variants) and the generation of the PRB2/1 fusion gene (intergenic event) with deletion of the PRB1 coding region and absence of multiple PRB1 coded proteins (Ps, Pm, Pe) in PRB2/1 homozygotes. Fourth, null mutations may also be produced (as with PsO and G1 0) by single nucleotide changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.