Abstract

Identifying the genes that underlie phenotypic variation in natural populations, and assessing the consequences of polymorphisms at these loci for individual fitness are major objectives in evolutionary biology. Yet, with the exception of a few success stories, little progress has been made, and our understanding of the link between genotype and phenotype is still in its infancy. For example, although body length in humans is largely genetically determined, with heritability estimates greater than 0.8, massive genome-wide association studies (GWAS) have only been able to account for a very small proportion of this variation (Gudbjartsson et al. 2008). If it is so difficult to explain the genetics behind relatively 'simple' traits, can we envision that it will at all be possible to find genes underlying complex behavioural traits in wild non-model organisms? Some notable examples suggest that this can indeed be a worthwhile endeavour. Recently, the circadian rhythm gene Clock has been associated with timing of breeding in a wild blue tit population (Johnsen et al. 2007; Liedvogel et al. 2009) and the Pgi gene to variation in dispersal and flight endurance in Glanville fritillary butterflies (Niitepold et al. 2009). A promising candidate gene for influencing complex animal personality traits, also known as behavioural syndromes (Sih et al. 2004), is the dopamine receptor D4 (DRD4) gene. Within the last decade, polymorphisms in this gene have been associated with variation in novelty seeking and exploration behaviour in a range of species, from humans to great tits (Schinka et al. 2002; Fidler et al. 2007). In this issue, Korsten et al. (2010) attempt to replicate this previously observed association in wild-living birds, and test for the generality of the association between DRD4 and personality across a number of European great tit populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call