Abstract

Previous studies have shown that in most pair matings of Mytilus edulis, M. trossulus, and M. galloprovincialis there is a large sex-ratio bias in favor of either males or females. The degree of bias is a characteristic property of the female parent, as matings of the same female with different males produce the same sex ratio, but matings of the same male with different females produce different sex ratios. All three species possess the unusual feature of doubly uniparental inheritance of mitochondrial DNA (mtDNA); i.e., they contain two distinct types of mtDNA, one that is transmitted matrilinearly and one that is transmitted patrilinearly. This coupling of sex and mtDNA transmission raises the possibility that the mechanism of sex-ratio determination in mussels might be under the control of the mtDNA of the female parent. Here we present data from pedigreed crosses that confirm the previous observations that in mussel matings there is a strong sex-ratio bias and that the bias is under the control of the female parent. In addition, these data strongly suggest that this control is exercised by the mother's nuclear rather than mitochondrial genotype. Making use of these findings we develop a model of mother-dependent sex determination and use data from crosses involving wild females to test the model's predictions at the population level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.