Abstract

Drosophila simulans and D. melanogaster are sibling cosmopolitan species with imperfect ethological isolation. Hybridization is easy between D. melanogaster females and D. simulans males, but the reciprocal cross has been traditionally considered as very scarce and little is known about the environmental and genetic factors that affect it. We used classical genetic analyses to determine the influence of each major chromosome on the breakdown of sexual isolation between females of D. simulans and D. melanogaster males. In addition, we have made a first attempt to locate the genetic systems involved in this process. At least two genes, or two groups of genes, are responsible for hybridization, located in the X chromosome and in the left arm of chromosome II. The inheritance mode of both genetic systems is different. The genes in the X chromosome show dominance for high levels of hybridization, whereas those in chromosome II show dominance for low levels. These results contrast with other investigations on the melanogaster subgroup, suggesting independent evolutionary events events during the speciation process in each species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call