Abstract

Simple SummaryThe study was carried out in order to investigate the genetic background of arthrogryposis and macroglossia in the Piemontese cattle breed, for which limited information is available so far. The genotyping of affected and healthy animals with a high-density chip and the subsequent genome-wide association study did not evidence a single strong association with the two pathologies. Therefore, for arthrogryposis, the results do not support the existence of a single-gene model, as reported for other breeds. Rather, 23 significant markers on different chromosomes were found, associated to arthrogryposis, to macroglossia, or to both pathologies, suggesting a more complex genetic mechanism underlying both diseases in the Piemontese breed. The significant single nucleotide polymorphisms (SNPs) allowed the identification of some genes (NTN3, KCNH1, KCNH2, and KANK3) for which a possible role in the pathologies can be hypothesized. The real involvement of these genes needs to be further investigated and validated.Arthrogryposis and macroglossia are congenital pathologies known in several cattle breeds, including Piemontese. As variations in single genes were identified as responsible for arthrogryposis in some breeds, we decided: (i) to test the hypothesis of a similar genetic determinism for arthrogryposis in the Piemontese breed by genotyping affected and healthy animals with a high-density chip and applying genome-wide association study (GWAS), FST and canonical discriminant analysis (CDA) procedures, and (ii) to investigate with the same approach the genetic background of macroglossia, for which no genetic studies exist so far. The study included 125 animals (63 healthy, 30 with arthrogryposis, and 32 with macroglossia). Differently from what reported for other breeds, the analysis did not evidence a single strong association with the two pathologies. Rather, 23 significant markers on different chromosomes were found (7 associated to arthrogryposis, 11 to macroglossia, and 5 to both pathologies), suggesting a multifactorial genetic mechanism underlying both diseases in the Piemontese breed. In the 100-kb interval surrounding the significant SNPs, 20 and 26 genes were identified for arthrogryposis and macroglossia, respectively, with 12 genes in common to both diseases. For some genes (NTN3, KCNH1, KCNH2, and KANK3), a possible role in the pathologies can be hypothesized, being involved in processes related to muscular or nervous tissue development. The real involvement of these genes needs to be further investigated and validated.

Highlights

  • Arthrogryposis and macroglossia have long been known as congenital abnormalities observed in several cattle breeds [1,2]

  • The aims of this study were: (i) to test the hypothesis of a similar monogenic determinism for arthrogryposis in the Piemontese cattle breed by genotyping affected and healthy animals with a high-density chip never used in previous studies and applying genome-wide association study (GWAS), FST and canonical discriminant analysis (CDA) procedures, and (ii) to investigate with the same approach the genetic background of macroglossia, for which no information is available so far

  • The present study provides new data on the genetics of arthrogryposis and the first insight into the analysis of macroglossia in the Piemontese breed

Read more

Summary

Introduction

Arthrogryposis and macroglossia have long been known as congenital abnormalities observed in several cattle breeds [1,2]. Arthrogryposis is characterized by joints contractures with different degrees of severity, which can affect one to four legs, with various associated clinical signs, the most frequent being cleft palate [3]. The defect is thought to have a genetic basis, but no scientific evidence is available so far. For both defects, double muscling is considered as a predisposing factor. The observation that the manipulation of the myostatin gene and, the downregulation of its expression resulted in a series of adverse effects, including leg problems and macroglossia, which seems to confirm the negative influence of double muscling [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call