Abstract
White matter (WM) plays a vital role in the efficient transfer of information between grey matter regions. Modern imaging techniques such as diffusion tensor imaging (DTI) have enabled the examination of WM microstructural changes across the lifespan, but there is limited knowledge about the role genetics plays in the pattern and aetiology of age-related WM microstructural changes. Family and twin studies suggest that the heritability of WM integrity measures changes over the lifespan, with the common DTI measure, fractional anisotropy (FA), showing moderate to high heritability in adults. However, few heritability studies have been undertaken in older adults. Linkage studies in middle-aged adults suggest that specific regions on chromosomes 3 and 15 may harbour genetic variants for WM integrity. A number of studies have investigated candidate genes, with the APOE ɛ4 polymorphism being the most frequently studied. Although these candidate gene studies suggest associations of particular genes with WM integrity measures in some specific brain regions, the findings remain inconsistent due to differences in their methodologies, samples and the outcome measures used. The APOE ɛ4 allele has been associated with decreased WM integrity (FA) in the cingulum, corpus callosum and parahippocampal gyrus. Only one genome-wide association study of global WM integrity measures in older adults has been published, and reported suggestive single nucleotide polymorphisms await replication. Overall, genetic age-related WM integrity studies are lacking and a concerted effort to examine the genetic determinants of age-related decline in WM integrity is clearly needed to improve our understanding of the ageing brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.