Abstract

The sterile insect technique is an area‐wide pest control method that reduces agricultural pest populations by releasing mass‐reared sterile insects, which then compete for mates with wild insects. Contemporary genetics‐based technologies use insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation.Engineered strains of agricultural pest species, including moths such as the diamondback moth Plutella xylostella and fruit flies such as the Mediterranean fruit fly Ceratitis capitata, have been developed with lethality that only operates on females.Transgenic crops expressing insecticidal toxins are widely used; the economic benefits of these crops would be lost if toxin resistance spread through the pest population. The primary resistance management method is a high‐dose/refuge strategy, requiring toxin‐free crops as refuges near the insecticidal crops, as well as toxin doses sufficiently high to kill wild‐type insects and insects heterozygous for a resistance allele.Mass‐release of toxin‐sensitive engineered males (carrying female‐lethal genes), as well as suppressing populations, could substantially delay or reverse the spread of resistance. These transgenic insect technologies could form an effective resistance management strategy.We outline some policy considerations for taking genetic insect control systems through to field implementation.

Highlights

  • Many insects in agro-ecosystems are considered to be major global pests causing significant economic harm

  • The Mediterranean fruit fly (‘Medfly’) Ceratitis capitata (Wiedemann) is a highly invasive generalist attacking more than 250 host plants, and is one of the world’s most economically important pests (CABI, 2016)

  • The economics of particular pest and crop species would have to be considered in the context of any current regulation and environmental harm from current practices, to assess whether such insect releases are likely to be of benefit to the various participating stakeholders

Read more

Summary

Introduction

Many insects in agro-ecosystems are considered to be major global pests causing significant economic harm. For all three of these example species, new genetic insect control methods are being developed to tackle agriculturally important pest populations.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.