Abstract

While sex is an ancient and highly conserved eukaryotic invention, self-incompatibility systems such as mating types or sexes appear to be derived limitations that show considerable evolutionary plasticity. Within a single class of ciliates, Paramecium and Tetrahymena species have long been known to present a wide variety of mating type numbers and modes of inheritance, but only recently have the genes involved been identified. Although similar transmembrane proteins mediate self/nonself recognition in both ciliates, the mechanisms of mating type determination differ widely, ranging from Mendelian systems to developmental nuclear differentiation, either stochastic or maternally inherited. The non-Mendelian systems rely on programmed editing of the germline genome that occurs during differentiation of the somatic nucleus, and they have co-opted different DNA recombination mechanisms-some previously unknown. Here we review the recent molecular advances and some remaining unsolved questions and discuss the possible implications of these diverse mechanisms for inbreeding/outbreeding balance regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call