Abstract

As deforestation progresses in the tropics, wildlife populations are increasingly restricted to forest fragments. Here we study genetic population structure in the endangered Ashy red colobus (Piliocolobus tephrosceles) population in the forest fragments surrounding Kibale National Park, Uganda. Subsequently, we use landscape features (elevation, road data and distance to the park) to design a feasible strategy to restore forest in a fashion suitable for both the dispersal patterns of the species and land use practices of the local people. A lack of association between geographic distance and pairwise genetic relatedness among localities, the presence of first degree relatives across localities, and a low global Fst value suggest that red colobus individuals have migrated across this landscape in the recent past. Thus, a series of “stepping stone” forests from the fragments to the park will likely maintain viability of red colobus fragment populations. In this area, low-lying valleys are legally protected to prevent flooding and are considered of low-economic value to local people. We identify such valleys for development of community-based forest restoration efforts that will aid in red colobus conservation and provide various ecosystem services. Our study outlines how genetics and community-based restoration can be integrated to provide realistic conservation solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call