Abstract

Multicellular biological systems, particularly living neural networks, exhibit highly complex organization properties that pose difficulties for building cell-specific biocompatible interfaces. We previously developed an approach to genetically program cells to assemble structures that modify electrical properties of neurons in situ, opening up the possibility of building minimally invasive cell-specific structures and interfaces. However, the efficiency and biocompatibility of this approach were challenged by limited membrane targeting of the constructed materials. Here, we design a method for highly localized expression of enzymes targeted to the plasma membrane of primary neurons, with minimal intracellular retention. Next, we show that polymers synthesized in situ by this approach form dense extracellular clusters selectively on the targeted cell membrane and that neurons remain viable after polymerization. Last, we show generalizability of this method across a range of design strategies. This platform can be readily extended to incorporate a broad diversity of materials onto specific cell membranes within tissues and may further enable next-generation biological interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.