Abstract

In this study, we introduce and investigate a class of neural architectures of self-organizing neural networks (SONN) that is based on a genetically optimized multilayer perceptron with polynomial neurons (PNs) or fuzzy polynomial neurons (FPNs), develop a comprehensive design methodology involving mechanisms of genetic optimization and carry out a series of numeric experiments. We distinguish between two kinds of SONN architectures, that is, (a) Polynomial Neuron (PN) based and (b) Fuzzy Polynomial Neuron (FPN) based self-organizing neural networks. The GA-based design procedure being applied at each layer of SONN leads to the selection of preferred nodes with specific local characteristics (such as the number of input variables, the order of the polynomial, and a collection of the specific subset of input variables) available within the network.KeywordsMultilayer PerceptronGenetic OptimizationPolynomial Neural NetworkSpecific Local CharacteristicPrefer NodeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.