Abstract

The authors propose a combined approach for definition of the shear rigidity of the multilayered soil which is cut through by a pile. The solution for the vertical direction is presented in the view of an axisymmetric problem. As to the horizontal direction, the solution is presented in view of a beam on elastic subsoil with genetically non-linear transition to equivalent horizontal rigidity of the wide pile field in condition of dynamic forces action. The axisymmetric solution provides visual clarity in the analysis of the stress-strain state of the pile and near-pile soil in comparison with the approved analytical methods. To speed up calculations at the stage of the main combination of constant and long-term impacts, the vertical rigidity of the base under the foot of the pile can be calculated analytically as for a stamp on an elastic-plastic base. The horizontal rigidity is considered as for a discrete single bent pile in the medium of an elastic layered half-space at the stage of formation of the stress-strain state of the system under the main combination of static loads. At the final stage of short-term or special load, a transition to the integral shear rigidity of a pile field is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call