Abstract

In nature, there exist a wide range of dsRNA-binding proteins that have different binding modes for small interfering RNA (siRNA) as well as structural differences, and some of these proteins have potential as effective siRNA delivery carriers. In order to deliver siRNA into cancer cells, a dsRNA-binding 2b protein derived from Tomato aspermy virus was genetically modified by fusing the integrin-targeting RGD peptide to its C-terminus, and biosynthesized. The resulting 2b-RGD protein possesses distinct characteristics favorable for biomedical applications of siRNA: (i) high affinity for siRNA, (ii) siRNA protection against RNases in serum, (iii) low cytotoxicity compared to the polycationic polymers often employed in conventional siRNA carriers, (iv) specific binding to integrins on cancer cells, and the ability to pass through the cell membrane via endocytosis, and (v) the ability to facilitate cytosolic release of siRNA. Here, we demonstrate that the 2b-RGD/siRNA complexes have great potential as a tumor-targeting siRNA delivery carrier and suggest their possible therapeutic applications for cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.