Abstract

Although nucleic acids-based fluorescent biosensors, exemplified by the hybridization chain reaction (HCR), have exhibited promise as an imaging tool for detecting disease-related biomolecular makers in living biosystems, they still face certain challenges. These include the need for improved sensitivity, poor bio-targeting capability, the absence of signal enrichment interface and the uncontrollable biosensing initiation. Herein, we present a range of effective solutions. First, a stacking design resembling building blocks is used to construct a special hierarchical HCR (termed H-HCR), for which a hierarchical bridge is employed to graft multiunit HCR products. Furthermore, the H-HCR components are encapsulated into a virus-like particle (VLP) endowed with a naturally peptide-mediated targeting unit through genetic engineering of plasmids, after which the biosensor can specifically identify cancer cytomembranes. By further creating a multibranched DNA scaffold to enrich the H-HCR produced detection signals, the biosensor's analyte recognition module is inserted with a photocleavage-linker, allowing that the biosensing process can be spatiotemporally initiated via a light-powered behavior. Following these innovations, this genetically engineered VLP-armoured and multibranched DNA-scaffold-corbelled H-HCR demonstrates an ultra-sensitive and specific biosensing performance to a cancer-associated microRNA marker (miRNA-155). Beyond the worthy in vitro analysis, our method is also effective in performing imaging assays for such low-abundance analyte in living cells and even bodies, thus providing a roust platform for disease diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call