Abstract

Genetic engineering methodology offers the ability to synthesize protein-based polymers with precisely controlled structures. Protein-based polymers synthesized by recombinant techniques have a well-defined monomer composition and sequence, stereochemistry, and a narrow molecular weight distribution. The structure of the polymeric carrier at the molecular level influences its biological disposition and drug release profile. Current methodologies of polymer synthesis (chemical polymerization) result in the production of polymers with heterogeneous molecular weights, and with monomer sequences and compositions defined in terms of statistical distributions. Genetic engineering methodologies can be used to design new polymeric drug carriers with improved properties, such as better-defined biorecognition, pharmacokinetic, biodegradation, and drug release profiles. In this review article the rationale and methodology of polymer synthesis using genetic engineering techniques, the status of such polymers in drug delivery to-date, and the potential of these polymers for the development of new systems in the future are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.