Abstract

Vivid (VVD) is a photoreceptor derived from Neurospora Crassa that rapidly forms a homodimer in response to blue light. Although VVD has several advantages over other photoreceptors as photoinducible homodimerization system, VVD has a critical limitation in its low dimer-forming efficiency. To overcome this limitation of wild-type VVD, here we conduct site-directed saturation mutagenesis in the homodimer interface of VVD. We have found that the Ile52Cys mutation of VVD (VVD-52C) substantially improves its homodimer-forming efficiency up to 180%. We have demonstrated the utility of VVD-52C for making a light-inducible gene expression system more robust. In addition, using VVD-52C, we have developed photoactivatable caspase-9, which enables optical control of apoptosis of mammalian cells. The present genetically engineered photoinducible homodimerization system can provide a powerful tool to optically control a broad range of molecular processes in the cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call