Abstract

We report the genetically encoded chemical decaging strategy for protein activation in living bacterial cells. In contrast to the metabolically labile photocaging groups inside Escherichia coli, our chemical decaging strategy that relies on the inverse electron-demand Diels-Alder (iDA) reaction is compatible with the intracellular environment of bacteria, which can be a general tool for gain-of-function study of a given protein in prokaryotic systems. By applying this strategy for in situ activation of the indole-producing enzyme TnaA, we built an orthogonal and chemically inducible indole production pathway inside E. coli cells, which revealed the role of indole in bacterial antibiotic tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.